Year 6: Measurement

Area

- In Year 6, the new focus is finding the area of triangles and parallelograms using the knowledge that we have from Y5.
- Children will be exposed to the new formulas to work out the area of these shapes.

- Children are introduced to finding the area of a triangle by counting squares.
- They estimated area in Year 5, but may need to be reminded of efficient strategies for calculating and estimating areas of shapes.
- Children first find the areas of triangles that require them to only count full and half squares. They can calculate these separately and then combine them to find the area.

Complete the sentences to find the area of the triangles.

Things to look out for

- Children may count half squares as full squares.
- Without an efficient method, children may not count squares accurately.
- Children may find it difficult to draw a triangle with a specific area.
- If a triangle is not placed on a line, children may believe it is impossible to estimate its area.

Instructions on how to find the area of a triangle.

Scott uses the formula to work out the area of this right-angled triangle.

area =
$$\frac{1}{2}$$
 × base × perpendicular height
area = $\frac{1}{2}$ × 6 × 4 = $\frac{1}{2}$ × 24 = 12 cm²

area =
$$\frac{1}{2}$$
 × 6 × 4 = $\frac{1}{2}$ × 24 = 12 cm²

Use the formula to find the areas of the triangles.

The area of a Parallelogram

Children explore the area of a parallelogram, identifying and using a formula.

Children look at the properties of a parallelogram and compare to a rectangle.

Using the "cut-and-move method", they explore how the parts of the parallelogram can be rearranged to make a rectangle in which the length and width correspond to the base and perpendicular height of the parallelogram.

Through this, they recognise that the area of a parallelogram can be found by using the formula

area = base × perpendicular height.

Things to look out for

- When finding the area of a parallelogram, children may try to use the formula for finding the area of a rectangle or a triangle.
- Children may struggle to identify the base and perpendicular height.

Possible sentence stems

The base of the parallelogram is _____ cm.
 The perpendicular height of the parallelogram is _____ cm.
 The area of the parallelogram is _____ × ____ = ___ cm²

- Copy the parallelogram onto centimetre squared paper.Estimate its area by counting squares.
- Now cut along the dotted line.

Move the triangle to make a rectangle.

What is the area of the rectangle? 35cm

What do you notice?

nnie has worked out the area of this parallelogram.

area = base \times perpendicular height $= 4 \text{ cm} \times 5 \text{ cm}$

 $= 20 \text{ cm}^2$

 $4 \times 8 = 32$ Use Annie's method to find the areas of the parallelograms.

125÷2=

Perimeter

Year 6

- Find the perimeters of rectangles by measuring the sides and by calculation.
- Explore different methods of finding the perimeter eg add all four sides, add length and width and then double the answer.
- Use an efficient method to find the perimeter.

Revision and ensuring your child is secure in this area.

Volume

In Year 6, the children are introduced the formula to calculate volume in 3-D shapes.

LxWxH

5cm X 2cm = 10cm

10cm x3cm = **30cm**

$$3 \times 2 = 6$$

$$6 \times 5 = 30 \text{cm}$$

volume = length × width × height

Geometry In year 6 ...

Vertically opposite angles

- Vertically opposite angles are equal.
- What are vertical angles = two straight lines that intersect at a point = four angles are created.
- Through investigation, children see that there are two pairs of equal angles.

Key learning

- Take a piece of paper and draw a large "X".
 - Mark the angles on as shown.
 - Measure each angle.
 - What do you notice about angles b and d?
 What do you notice about angles a and c?
 Is this always the case? Draw other "X" shapes to investigate.

Key knowledge needed:

- Angles on a straight line add up to 180.
- Angles around a point add up to 360.

Work out the sizes of the angles marked with letters.

Angles in a quadrilateral

Key learning

Measure the angles of the quadrilateral.

What is the sum of all four angles?

Huan draws a line on the quadrilateral to prove that the angles in any quadrilateral add up to 360°.

Explain Huan's reasoning.

Key knowledge Sum of angles = 360

We encourage the children to use protractors and measure each interior angle.

If we know that angles in a triangle add up to 180 we can apply that knowledge when calculating quadrilaterals' interior angles.

RPS - Angles

Key knowledge needed:

- Angles on a straight line add up to 180.
- Angles around a point add up to 360.

This diagram is drawn using three straight lines.

180 - 157 = 23

a and c are vertically opposite therefore

c = 23

180 -113= 67

I only have enough information to work out the size of angle a.

No

 $a = 23^{\circ}$

 $b = 67^{\circ}$

 $c = 23^{\circ}$

Position and direction.

The four quadrants

What are the coordinates of the four points?

Key knowledge needed:

Start at the origin (0) .

Move along the x axis first. ('Down the coridoor')

Then move up or down the Y axis (Up or down the stairs')

How did you work them out?

$$A = (2,1)$$

$$A = (2,1)$$
 $B = (-2,1)$ $C (-2,-2)$ $D = (2,-2)$

$$D=(2,-2)$$

Translations

 Describe the translation from shape A to shape B.

Translation = movement.

Choose one vertex eg

lower right of shape A.

8 squares to the right, down 6 squares.

Reflections

Mo is reflecting this rectangle in the x-axis.

I will reflect one vertex at a time. I can count how far away it is from the x-axis, then plot the point that far below the x-axis.

Use Mo's method to complete the reflection.

What are the coordinates of each vertex of the reflected rectangle

Top left = (1,-2) Top right = (3,-2)

Bottom left = (1,-3) Bottom right (3,-3)