White

PROGRESSION THROUGH CALCULATION GUIDANCE

This guidance has been developed from the White Rose Calculation Policy: working document, which was written as a guide to indicate the progression through Addition, Subtraction, Multiplication and Division in Years 1-6.

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
$\stackrel{-}{1}$$\stackrel{1}{0}$$\underset{\sim}{0}$		Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. \square	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ $3+4=7$ Use the part-whole diagrams as shown above to move into the abstract.
	∞ $\stackrel{0}{ \pm}$ 0 0	Use a number track to count on in ones and find the total. Number tracks are also used in Year 2.	Use a number line to count on in ones.	$5+3=8$

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
		$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 6+4=10 \\ & 10+1=11 \end{aligned}$	$6+5=11$
			Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$7+6+3=16$ 10 Combine the two numbers that make 10 and then add on the remainder.

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$ $44+15=$	Children can draw the counters to help them to solveadditions. 10s 1s	$\begin{aligned} & 24+15=39 \\ & 24 \\ & +15 \\ & \hline 39 \end{aligned}$
$\begin{aligned} & N \\ & \frac{1}{0} \\ & \underset{\sim}{2} \end{aligned}$			Using place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 40+9 \\ & \frac{20+3}{60+12=72} \end{aligned}$

CALCULATION GUIDANCE: Addition

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{\downarrow}{m} \\ & \frac{1}{\pi} \\ & \frac{1}{\tau} \end{aligned}$		 Add up the tens and regroup 10 tens for 1 one hundred. $\begin{array}{r} 265 \\ +164 \\ \hline 429 \\ \hline 1 \end{array}$ NB By Year 4 children will progress on to adding four-digit numbers.	100s Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding. NB Addition of money needs to have f and p added separately.	$\begin{aligned} & 100+40+6 \\ & 500+20+7 \\ & \hline 600+70+3=673 \end{aligned}$ As the children progress, they will move from the expanded to the compacted method eg $\begin{array}{r} 1378 \\ +2148 \\ \hline 3526 \\ \hline 11 \end{array}$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.
0 $\frac{1}{1}$ $\frac{1}{2}$ d		Consolidate understanding using numbers with more than 4 digits and extend by adding numbers with up to 3 decimal places. In Years 5 and 6, children are encouraged to work in the abstract, using the column method to add larger numbers efficiently. However, the use of concrete and pictorial resources continues to be used to support children's learning in Years 5 and 6 to enable them to progress to being confident working in the abstract.		

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \stackrel{1}{\circ} \\ & \stackrel{1}{0} \\ & \underset{\sim}{2} \end{aligned}$		Use physical objects, counters, cubes etc. to show how objects can be taken away. $4-2=2$	Cross out drawn objects to show whathas been taken away. $4-2=2$	$4-2=2$
		$7-3=4$ (Part-whole models are also used in Year 2).	Count back on a number line or numbertrack Start at the bigger number and count back the smaller number, showing the jumps on the number line.	eg Put 13 in your head, count back 4. What number are you at? $13-4=9$ Use your fingers to help.
		Compare amounts and objects to find the difference.	Count on to find the difference. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Draw a bar model to find the difference between two numbers.	Hannah has 8 goldfish. Helen has 3 goldfish. Find the difference between the number of goldfish the girls have.

CALCULATION GUIDANCE: Subtraction

CALCULATION GUIDANCE: Subtraction

	Objective	Concrete	Pictorial	Abstract
		$435-273=162$	Children draw the counters onto a place value grid. Show the subtraction and the exchange by crossing out counters. When confident, children can find their own way to record the exchange/regrouping. Draw and use bar models and partwhole models to support subtraction. \square 435 273 \square	Children start their formal written method by partitioning the number into clear place value columns. This will lead to an understanding of subtracting any number of digits including decimals without the need to label the place value columns. By Year 5/6 children are encouraged to work in the abstract using column method to subtract numbers efficiently.

CALCULATION GUIDANCE: Multiplication

	Objective	Concrete	Pictorial	Abstract
		Use different objects to add equal groups.	There are 3 plates. Each plate has two star biscuits on. How many biscuits are there? $2+2+2=6$	Write addition sentences to describe objects and pictures. $2+2+2=6$
		Create arrays using counters/cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

CALCULATION GUIDANCE: Multiplication

CALCULATION GUIDANCE: Multiplication

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract
	$\stackrel{\infty}{\stackrel{0}{\bar{\omega}}}$	Use an even number of cubes to practically share between two people.	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 8 buns between two people. $8 \div 2=4$
$\begin{aligned} & \text { N } \\ & \text { İ } \\ & \stackrel{1}{\mathscr{O}} \end{aligned}$		Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. : : : : :	How many groups of 4 are there? Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 10 \div 5=? \\ & 5 \times ?=10 \end{aligned}$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?

CALCULATION GUIDANCE: Division

CALCULATION GUIDANCE: Division

CALCULATION GUIDANCE: Division

CALCULATION GUIDANCE: Division

	Objective	Concrete	Pictorial	Abstract				
		Children are encouraged to move away from the concrete and the pictorial when dividing numbers with multiple exchanges.	Children are encouraged to move away from the concrete and the pictorial when dividing numbers with multiple exchanges.	0 3 6 12 4 ${ }^{4} 3$ ${ }^{7} 2$				
					0	4	8	9
				15	7	${ }_{3}$	13_{3}	
$\begin{aligned} & \bullet \\ & \frac{0}{\bar{\pi}} \\ & \underset{\sim}{\infty} \end{aligned}$				$\begin{aligned} & 1 \times 15=1 \\ & 2 \times 15= \\ & 3 \times 15= \\ & 4 \times 15= \\ & 5 \times 15= \\ & 10 \times 15= \end{aligned}$			dren tiples cal re	an write out o support ations with ainders.

